Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel.
نویسندگان
چکیده
Defects in polycystin-2, a ubiquitous transmembrane glycoprotein of unknown function, is a major cause of autosomal dominant polycystic kidney disease (ADPKD), whose manifestation entails the development of fluid-filled cysts in target organs. Here, we demonstrate that polycystin-2 is present in term human syncytiotrophoblast, where it behaves as a nonselective cation channel. Lipid bilayer reconstitution of polycystin-2-positive human syncytiotrophoblast apical membranes displayed a nonselective cation channel with multiple subconductance states, and a high perm-selectivity to Ca2+. This channel was inhibited by anti-polycystin-2 antibody, Ca2+, La3+, Gd3+, and the diuretic amiloride. Channel function by polycystin-2 was confirmed by patch-clamping experiments of polycystin-2 heterologously infected Sf9 insect cells. Further, purified insect cell-derived recombinant polycystin-2 and in vitro translated human polycystin-2 had similar ion channel activity. The polycystin-2 channel may be associated with fluid accumulation and/or ion transport regulation in target epithelia, including placenta. Dysregulation of this channel provides a mechanism for the onset and progression of ADPKD.
منابع مشابه
Cation channel regulation by COOH-terminal cytoplasmic tail of polycystin-1: mutational and functional analysis.
Polycystin-1 (PKD1) mutations account for approximately 85% of autosomal dominant polycystic kidney disease (ADPKD). We have shown previously that oocyte surface expression of a transmembrane fusion protein encoding part of the cytoplasmic COOH terminus of PKD1 increases activity of a Ca2+-permeable cation channel. We show here that human ADPKD mutations incorporated into this fusion protein at...
متن کاملPolycystin-2 is an essential ion channel subunit in the primary cilium of the renal collecting duct epithelium
Mutations in the polycystin genes, PKD1 or PKD2, results in Autosomal Dominant Polycystic Kidney Disease (ADPKD). Although a genetic basis of ADPKD is established, we lack a clear understanding of polycystin proteins' functions as ion channels. This question remains unsolved largely because polycystins localize to the primary cilium - a tiny, antenna-like organelle. Using a new ADPKD mouse mode...
متن کاملClinical management of polycystic kidney disease.
ADPKD is caused by mutations in two genes:1,2 PKD1 on chromosome 16p13.3, and PKD2, on chromosome 4q21-23. The proteins encoded by PKD1 and PKD2 are polycystin-1 and polycystin-2 (Fig 1).3 Polycystin-1 is probably involved in protein-protein or proteincarbohydrate interactions. Polycystin-2 is a nonselective cation channel that can conduct calcium ions. Mutations in either PKD1 or PKD2 prod...
متن کاملTissue and cellular localization of a novel polycystic kidney disease-like gene product, polycystin-L.
Polycystin-L (PCL), the third member of the polycystin family of proteins, functions as a Ca2+-modulated nonselective cation channel when expressed in Xenopus oocytes. Polycystin-1 and -2 are mutated in autosomal-dominant polycystic kidney disease (ADPKD), but the role of PCL in disease has not been determined. In this study, an anti-peptide polyclonal antiserum was generated against the carbox...
متن کاملRegulation of calcium signaling by polycystin-2.
Autosomal dominant PKD (ADPKD) is a common lethal genetic disorder characterized by progressive development of fluid-filled cysts in the kidney and other target organs. ADPKD is caused by mutations in the PKD1 and PKD2 genes, encoding the transmembrane proteins polycystin-1 (PC1) and polycystin-2 (PC2), respectively. Although the function and putative interacting ligands of PC1 are largely unkn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 3 شماره
صفحات -
تاریخ انتشار 2001